Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences.

نویسندگان

  • S Ahualli
  • M L Jiménez
  • M M Fernández
  • G Iglesias
  • D Brogioli
  • A V Delgado
چکیده

In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes. A model is elaborated on the operation of the cell, based on the electrokinetic theory of soft particles. All the features of the model are experimentally reproduced, although a small quantitative difference concerning the maximum open-circuit voltage is found, suggesting that the coating is the key point to improve the efficiency. In the experimental conditions used, we obtain a power of 12.1 mW m(-2). Overall, the method proves to be a fruitful and simple approach to salinity-gradient energy production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverse Electrodialysis for Salinity Gradient Power Generation: Challenges and Future Perspectives

Salinity gradient energy, which is also known as Blue energy, is a renewable energy form that can be extracted from the mixing of two solutions with different salinities. About 80% of the current global electricity demand could potentially be covered by this energy source. Among several energy extraction technologie...

متن کامل

Modification of Polymeric Membrane for Energy Generation through Salinity Gradient: A Short Review

Salinity gradient energy (SGE) refers to the energy created from the difference in salt concentration between two streams. There are three types of SGE namely, pressure retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix). All these technologies require membrane for the system to be operational. In this short review, the membranes modifications for each principl...

متن کامل

Steel Coated with Cationic Poly (Ethylenimine) (PEI) and Anionic Poly (Vinylsulfate) (PVS) Polyelectrolyte Multilayer Nanofilm with Different Benzotriazole Inhibitor Concentrations

Nano-films consisting of an alternating sequence of positively and negatively charged polyelectrolyteshave been prepared by means of the electrostatic layer-by-layer sequential assembly technique on mildsteels. The mild steels were pretreated electrochemically to modify the mild steel surface. The modificationof the mild steel surface resulted in increasing the adhesion of the obtained nano-fil...

متن کامل

Quantitative (Chlorophyll-a) and qualitative (species composition) seasonal fluctuations of phytoplankton in Lavan coastal waters (North of the Persian Gulf)

Phytoplankton species composition as well as amount of Chlorophyll-a and their relation to physico-chemical parameters were studied. The samples were collected monthly from October 1996 until September 1997 in two stations, i.e. Lavan and Douberkeh coastal waters. In this study, 65 phytoplankton species related to 3 groups of diatoms, dinoflagellats and Blue-Green Algae (24 genus and 44 species...

متن کامل

Simultaneous Electricity Generation and Sulfur Removal by Electrogenic Sulfate Reducing Bacteria in BES System

The modern BioElectrochemical technologies can convert the energy stored in the chemical bonds of biodegradable organic materials to renewable electrical energy through the catalytic reactions of microorganisms while treating the waste waters. The present research was conducted to evaluate the efficiency of a single-chamber Bioelectrochemical system with the carbon aerogel catalyst, as a simple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 46  شماره 

صفحات  -

تاریخ انتشار 2014